Conservation Treatment: A Risk Factor

Adrian Heritage
Is the conservator a —best kept— secret agent of deterioration?
Can we be more honest about risk?

“truth is that which makes a people certain, clear, and strong.”

Martin Heidegger
Wall Paintings: irreversible treatment processes

CLEANING *selective* removal of material

UNCOVERING *selective* removal of material

AQUEOUS TREATMENTS, e.g. poulticing

FIXING

CONSOLIDATION

GROUTING

DETACHMENT
10 Agents of Deterioration (Negative Risk)

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Stefan Michalski 1987: 1994
Robert Waller 1994
10 Agents of Deterioration (Negative Risk?)

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Preventive approach

"first, do no harm“
[Primum non nocere]
Deterioration Agents

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Where is conservation treatment in all of this?
Deterioration Agents

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Preventive conservation

Where is conservation treatment in all of this?
10 Agents of Deterioration (Negative & Positive Risk)

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Two roles for conservators:

Preventive conservation
Remedial conservation
“Deterioration” Agents

...five stages:

1. avoid sources of the agent
2. detect the agent
3. block the agent
4. respond to the agent
5. recover from the agent

Michalski 1990:589
Agent 11: the potential for gain and or loss

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Detecting the 11th Agent

CLEANING
UNCOVERING
AQUEOUS TREATMENTS
FIXING
CONSOLIDATION
GROUTING
DETACHMENT
Deterioration Agents Role of conservator and treatment

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Conservator =

An agent who *tries* to do good!
Deterioration Agents

Role of conservator and treatment

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation

Treatment = Risk

= Opportunity
NECESSARY RISK in treatment processes

Dualism:

Negative Risk

Positive Risk

two necessary aspects of the treatment process
Two *necessary* aspects of the treatment process

Negative
For example: Irreversible information loss or treatment failure

Positive
For example: added value(s) like new or enhanced information (understanding), function, stabilisation
Value Shaping Agents

1. Physical Forces
2. Thieves and Vandals
3. Fire
4. Water
5. Pests
6. Pollutants
7. Light, Ultraviolet and Infrared
8. Incorrect Temperature
9. Incorrect Relative Humidity
10. Dissociation
11. Conservation

The agents are interrelated: complex interaction!
Role of conservator and treatment

4 Aristotelian Causes

1. material change (addition, subtraction, alteration)
1. material change (addition, subtraction, alteration)

2. formal change (aesthetic = appearance or shape)
1. material change (addition, subtraction, alteration)

2. formal change (aesthetic = appearance or shape)

3. interacting agent of change (conservator as carer, mender, maker,)
Role of conservator and treatment

1. material change (addition, subtraction, alteration)

2. formal change (aesthetic = appearance or shape)

3. interacting agent of change (conservator as carer, mender, maker,)

4. use or purpose (function, legibility, display, storage, transport)
Role of conservator and treatment

4 Aristotelian Causes

1. material change (addition, subtraction, alteration)

2. formal change (aesthetic = appearance or shape)

3. interacting agent of change (conservator as carer, mender, maker,)

4. use or purpose (function, legibility, display, storage, transport)

... a work of art has something to say and seeks to share its truth in dialogue

Hans-Georg Gadamer
what should be the limit of acceptable lifetime and acceptable decline in properties for conservation-quality materials to be used in long-term contact with artifacts? **The subject remains to be addressed.**

Feller 1994:11 *Accelerated aging: photochemical and thermal aspects*

<table>
<thead>
<tr>
<th>Class</th>
<th>Classification</th>
<th>Intended useful lifetime</th>
<th>Approximate equivalent standard of photochemical stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Materials in temporary contact</td>
<td>Less than 6 months?</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>Unstable or fugitive</td>
<td>Less than 20 years</td>
<td>BS1006 class 3 or less</td>
</tr>
<tr>
<td>B</td>
<td>Intermediate</td>
<td>(20–100 years)</td>
<td>(3 to 6)</td>
</tr>
<tr>
<td>A</td>
<td>Excellent</td>
<td>(A2?) greater than 100 years</td>
<td>Greater than BS1006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A1?) greater than 500 years</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 1.1. Standards of Intended Use and Photochemical Stability for Materials in Conservation (Feller 1975).
Feller 1994: “LIFETIMES” of objects and added materials

.... what should be the limit of acceptable lifetime and acceptable decline in properties for conservation-quality materials to be used in long-term contact with artifacts? **The subject remains to be addressed.**

<table>
<thead>
<tr>
<th>Class</th>
<th>Classification</th>
<th>Intended useful lifetime</th>
<th>Approximate equivalent standard of photochemical stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Materials in temporary contact</td>
<td>Less than 6 months?</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>Unstable or fugitive</td>
<td>Less than 20 years</td>
<td>BS1006 class 3 or less</td>
</tr>
<tr>
<td>B</td>
<td>Intermediate</td>
<td>(20–100 years)</td>
<td>(3 to 6)</td>
</tr>
<tr>
<td>A</td>
<td>Excellent</td>
<td>(A2?) greater than 100 years</td>
<td>Greater than BS1006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A1?) greater than 500 years</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 1.1. Standards of Intended Use and Photochemical Stability for Materials in Conservation (Feller 1975).

Feller 1994:11 *Accelerated aging: photochemical and thermal aspects*
<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Treatment</th>
<th>Cleaning Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1861-65</td>
<td>(Painted)</td>
<td>1874 subtractive Dirt removal</td>
<td>mechanical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1875 additive Dirt removal</td>
<td>aqueous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1878</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1888</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1894</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1897 subtractive Dirt removal</td>
<td>mechanical & aqueous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1897 additive Wax & Varnish?</td>
<td>organic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1938 subtractive Dirt removal</td>
<td>mechanical & aqueous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1938 additive Wax</td>
<td>organic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1963 subtractive Wax removal</td>
<td>solvent-based</td>
</tr>
<tr>
<td>Year</td>
<td>Type</td>
<td>Treatment</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>1861-65</td>
<td>Painted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>subtractive</td>
<td>Dirt removal [Cleaning mechanical]</td>
<td></td>
</tr>
<tr>
<td>1875</td>
<td>additive</td>
<td>Washing with water</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>subtractive</td>
<td>Dirt removal [Cleaning mechanical & aqueous]</td>
<td>Wax & Varnish? [Consolidants = organics]</td>
</tr>
<tr>
<td>1938</td>
<td>subtractive</td>
<td>Dirt removal [Cleaning mechanical & aqueous]</td>
<td>Wax [Consolidant = organic]</td>
</tr>
<tr>
<td>1963</td>
<td>subtractive</td>
<td>Wax removal [Cleaning solvent-based]</td>
<td></td>
</tr>
</tbody>
</table>
Treatments

Royal Gallery, Palace of Westminster, England

WATERGLASS WALL PAINTINGS: = Inorganic Binder (Potassium Silicate)

1861-65 (Painted)

1874 subtractive Dirt removal [Cleaning mechanical
1875 additive Washing with water]
1878
1888
1894

1897 subtractive Dirt removal [Cleaning mechanical & aqueous]
1897 additive Wax & Varnish? [Consolidants = organics]

1938 subtractive Dirt removal [Cleaning mechanical & aqueous]
1938 additive Wax [Consolidant = organic]

1963 subtractive Wax removal [Cleaning solvent-based]
“Cleaning” with light – experimentation with colour temperature (The Royal Gallery, Palace of Westminster)

„The meeting of Wellington and Blücher after the Battle of Waterloo“ - Beleuchtungsreihe bei wechselnden Lichtfarben

2700 Kelvin 3500 Kelvin 4000 Kelvin 5000 Kelvin 6500 Kelvin

„The Death of Nelson“ - Beleuchtungsreihe bei wechselnden Lichtfarben

2700 Kelvin 3500 Kelvin 4000 Kelvin 5000 Kelvin 6500 Kelvin
"Cleaning" with light – experimentation with colour temperature

Detail:
Ambient lighting in the Royal Gallery

Detail:
Lighting at 6800 Kelvin
Needed:

1. Change thinking away from isolated Deterioration Agents to interrelated Value-Shaping Agents

2. Explicit acknowledgement of risks posed by treatments and integration of dual roles (preventive – remedial) within risk management

3. Consider risk ratings for generic treatments (risk benefit)

4. More evidence-based research into treatment outcomes

5. New and better scientific/humanistic tools to help our decision-making

6. Recognition of creativity in conservation = decision making
"Beauty is truth, truth beauty,"
– that is all Ye know on earth,
and all ye need to know.

John Keats (1819), Ode on a Grecian Urn
The most thought-provoking thing in our thought-provoking time is that we are still not thinking.

Martin Heidegger

Was heisst Denken? (1951–1952)
Das Bedenklichste in unserer bedenklichen Zeit ist, dass wir noch nicht denken.