

Fachhochschule Köln Cologne University of Applied Sciences

02 Fakultät für Kulturwissenschaften

Conservation Treatment:

A Risk Factor

Adrian Heritage

Cologne Institute of
Conservation Sciences
Institut für Restaurierungs- und
Konservierungswissenschaft

Can we be more honest about risk?

"truth is that which makes a people certain, clear, and strong."

Martin Heidegger

Wall Paintings: irreversible treatment processes

CLEANING selective removal of material

UNCOVERING selective removal of material

AQUEOUS TREATMENTS, e.g. poulticing

FIXING

CONSOLIDATION

GROUTING

DETACHMENT

10 Agents of Deterioration (Negative Risk)

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

10 Agents of Deterioration (Negative Risk?)

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

Preventive approach

"first, do no harm"

[Primum non nocere]

Deterioration Agents

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

Where is conservation treatment in all of this?

Deterioration Agents

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

Preventive conservation

Where is conservation treatment in all of this?

10 Agents of Deterioration (Negative & Positive Risk)

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

Two roles for conservators:

Preventive conservation

Remedial conservation

"Deterioration" Agents

...five stages:

1 avoid sources of the agent
2 detect the agent
3 block the agent
4 respond to the agent
5 recover from the agent
Remedial

Michalski 1990:589

Agent 11: the potential for gain and or loss

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

Detecting the 11th Agent

CLEANING

UNCOVERING

AQUEOUS TREATMENTS

FIXING

CONSOLIDATION

GROUTING

DETACHMENT

Deterioration Agents Role of conservator and treatment

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity

10. Dissociation

Conservator =

An agent who tries to do good!

Deterioration Agents Role of conservator and treatment

- 1. Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- 10. Dissociation

Treatment = Risk

= Opportunity

NECESSARY RISK in treatment processes

Dualism:

Negative Risk

Positive Risk

two necessary aspects of the treatment process

Two necessary aspects of the treatment process

Negative

For example: Irreversible information loss or treatment failure

Positive

For example: added value(s) like new or enhanced information (understanding), function, stabilisation

Value Shaping Agents

- Physical Forces
- 2. Thieves and Vandals
- 3. Fire
- 4. Water
- 5. Pests
- 6. Pollutants
- 7. Light, Ultraviolet and Infrared
- 8. Incorrect Temperature
- 9. Incorrect Relative Humidity
- Dissociation
- 11. Conservation

The agents are interrelated: complex interaction!

1. material change (addition, subtraction, alteration)

- 1. material change (addition, subtraction, alteration)
- 2. formal change (aesthetic = appearance or shape)

- 1. material change (addition, subtraction, alteration)
- 2. formal change (aesthetic = appearance or shape)
- 3. interacting agent of change (conservator as carer, mender, maker,)

- 1. material change (addition, subtraction, alteration)
- 2. formal change (aesthetic = appearance or shape)
- 3. interacting agent of change (conservator as carer, mender, maker,)
- 4. use or purpose (function, legibility, display, storage, transport)

- 1. material change (addition, subtraction, alteration)
- 2. formal change (aesthetic = appearance or shape)
- 3. interacting agent of change (conservator as carer, mender, maker,)
- 4. use or purpose (function, legibility, display, storage, transport)

... a work of art has something to say and seeks to share its truth in dialogue

Hans-Georg Gadamer

Feller 1994: "LIFETIMES" of objects and added materials

what should be the limit of acceptable lifetime and acceptable decline in properties for conservation-quality materials to be used in long-term contact with artifacts? The subject remains to be addressed.

Feller 1994:11 Accelerated aging : photochemical and thermal aspects

Class	Classification	Intended useful lifetime	Approximate equivalent standard of photochemical stability
T	Materials in temporary contact	Less than 6 months?	-
С	Unstable or fugitive	Less than 20 years	BS1006 class 3 or less
В	Intermediate	(20-100 years)	(3 to 6)
Α	Excellent	(A2?) greater than 100 years	Greater than BS1006
		(A1?) greater than 500 years	?

Table 1.1. Standards of Intended Use and Photochemical Stability for Materials in Conservation (Feller 1975).

Feller 1994: "LIFETIMES" of objects and added materials

.... what should be the limit of acceptable lifetime and acceptable decline in properties for conservation-quality materials to be used in long-term contact with artifacts? **The subject remains to be addressed.**

Class	Classification	Intended useful lifetime	Approximate equivalent stand of photochemical stability
T	Materials in temporary contact	Less than 6 months?	-
С	Unstable or fugitive	Less than 20 years	BS1006 class 3 or less
В	Intermediate	(20-100 years)	(3 to 6)
Α	Excellent	(A2?) greater than 100 years	Greater than BS1006
		(A1?) greater than 500 years	?

Table 1.1. Standards of Intended Use and Photochemical Stability for Materials in Conservation (Feller 1975).

Feller 1994:11 Accelerated aging: photochemical and thermal aspects

Treatments

Royal Gallery, Palace of Westminster, England

WATERGLASS WALL PAINTINGS: = Inorganic Binder (Potassium Silicate)

1861-65 (Painted)

1874 1875 1878 1888 1894	subtractive additive	Dirt removal	[Cleaning mechanical Washing with water]
1897	subtractive additive	Dirt removal Wax & Varnish?	[Cleaning mechanical & aqueous] [Consolidants = organics]
1938	subtractive additive	Dirt removal Wax	[Cleaning mechanical & aqueous] [Consolidant = organic]
1963	subtractive	Wax removal	[Cleaning solvent-based]

Treatments

Royal Gallery, Palace of Westminster, England

WATERGLASS WALL PAINTINGS: = Inorganic Binder (Potassium Silicate)

1861-65 (Painted)

1874	subtractive	Dirt removal	[Cleaning mechanical
1875	additive		Washing with water]
1878 1888			
1894			
1897	subtractive additive	Dirt removal Wax & Varnish?	[Cleaning mechanical & aqueous] [Consolidants = organics]
1938	subtractive additive	Dirt removal Wax	[Cleaning mechanical & aqueous] [Consolidant = organic]
1963	subtractive	Wax removal	[Cleaning solvent-based]

Treatments

Royal Gallery, Palace of Westminster, England

WATERGLASS WALL PAINTINGS: = Inorganic Binder (Potassium Silicate)

1861-65 (P	Painted)
------------	----------

1874 1875 1878 1888 1894	subtractive additive	Dirt removal	[Cleaning mechanical Washing with water]
1897	subtractive	Dirt removal	[Cleaning mechanical & aqueous]
	additive	vvax & varnish	? [Consolidants = organics]
1938	subtractive	Dirt removal	[Cleaning mechanical & aqueous]
	additive	Wax	[Consolidant = organic]
1963	subtractive	Wax removal	[Cleaning solvent-based]

"The Death of Nelson" - Beleuchtungsreihe bei wechselnden Lichtfarben

 2700 Kelvin
 3500 Kelvin
 4000 Kelvin
 5000 Kelvin
 6500 Kelvin

LIGHT PROJECTION

Royal Gallery, Palace of Westminster, England

"Cleaning" with light – experimentation with colour temperature

Detail: Ambient lighting in the Royal Gallery Detail: Lighting at 6800 Kelvin

Needed:

- 1. Change thinking away from isolated Deterioration Agents to interrelated Value-Shaping Agents
- Explicit acknowledgement of risks posed by treatments and integration of dual roles (preventive – remedial) within risk management
- 3. Consider risk ratings for generic treatments (risk benefit)
- 4. More evidence—based research into treatment outcomes
- 5. New and better scientific/humanistic tools to help our decision-making
- 6. Recognition of creativity in conservation = decision making

Getting closer to the truth: conservator = value-shaper

"Beauty is truth, truth beauty,"

that is all Ye know on earth,

and all ye need to know.

John Keats (1819), Ode on a Grecian Urn

Value-shaper

The most thought-provoking thing in our thought-provoking time is that we are still not thinking.

Martin Heidegger