Comparing zeolite adsorption properties in cultural heritage contexts

Elyse Canosa¹, Sara Norrehed¹, Anders Karlsson², Andreas Fischer², Charlotta Rigbrant³ 1 Swedish National Heritage Board, Visby, Sweden 2 Research Institutes of Sweden (RISE), Borås, Sweden 3 Camfil AB, Trosa, Sweden

SWEDISH NATIONAL HERITAGE BOARD RIKSANTIKVARIEÄMBETET

Purpose

To investigate the passive and active adsorption of acetic acid gas by different zeolites in comparison to activated carbon

Importance

Properties of the investigated adsorbents:

Adsorbent	Pore size	Polarity	Particle diameter
Zeolite Type 4A	4 Å	Polar	1 - 2 mm
Zeolite Type 5A	5 Å	Polar	1 - 2 mm
			4 0

 Acetic acid gas is harmful to museum objects but its reduction by adsorption is not well studied

• Little research exists on how different zeolites function in typical museum environments (i.e. low pollutant concentrations, low airflow, moderate humidity)

Active adsorption - forced airflow

- Acetic acid (6.8 ppm) forced through adsorbent bed (26 mm deep)
- Concentration measured upstream (before adsorption) and downstream (after adsorption) of adsorbent using a flame ionization detector
- Relative humidity: 54%, Temperature: 22 °C, Airflow: 1.8 m³/h,
 Contact time: 0.1 s

Downstream acetic acid concentrations

Zeolite Type 13X10 APolar1 - 2 mmGranular activated
carbon10 - 25 ÅNonpolar2.4 - 4.8 mm

Passive adsorption – no forced airflow

- Measured via headspace gas chromatography mass spectrometry
- 8 mg adsorbent in 20 mL headspace vial, one control vial
- 50% relative humidity, 23 °C, no forced airflow
- Data below accounts for acetic acid adsorption on vial walls

Conclusions

Upstream(pre-adsorption)

Time (minutes)

Acetic acid adsorption after 1 day

- Zeolites were less effective than activated carbon during active adsorption, but had faster uptake rates during passive adsorption
- All adsorbents passively adsorbed comparable amounts of acetic acid after 1 day of exposure
- The three zeolites demonstrated different active adsorption capabilities, with 13X the most effective
- Possible future work: determine capacity and isotherms for the adsorbents, perform case studies

Contact: elyse.canosa@raa.se

Copyright according to Creative Commons License CC BY